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Hamiltonians Allowing Wave Equations 
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Abstract 

A general criterion of when a Hamiltonian system has a wave equation is set up, and all 
such Hamiltonian systems (and hence all wave equations) are found. It is shown that the 
correspondence is one-to-one. 

1. Introduction 

Ideas about the relation between the Hamiltonian of a system as con- 
ceived classically and the wave equation of its quantum-theoretic analogue 
have been current since the beginning of the theory. It  is also well known 
that a correspondence between classical observables and operators cannot 
be set up if too many algebraic relations are to be preserved by this corre- 
spondence (see, for example, Joseph (1970) and Arens & Babbitt (1965)). 
Here we formulate a criterion of correspondence between Hamiltonians 
and wave equations which is sufficiently close to allow exactly one wave 
equation for each of the standard systems. The correspondence is so 
explicitly formulated that one can discover essentially all classical systems 
which have (in our sense of  'have')  wave equations. We can show in fact 
that the Schr~3dinger equation, together with a rather interesting generaliza- 
tion of the Kle in-Gordon equation (in which the mass is provided by a 
scalar field) already provide the list of all possible wave equations. 

A wave equation ~/r = 0 is any equation satisfied by e ~s wheneverf is  a 
solution to the Hamil ton-Jacobi  equation whose associated field of 
extremals represents a beam of parallel rays. In this case we c a l l f a  planar 
phase function. In Section 2 this condition of planarity is presented. It  is 
shown that in a Hamiltonian (or Lagrangian) system there is an intrinsic 
connection giving rise to a generalized covariant differentiation, and 
planarity is defined in terms of the vanishing of the associated divergence 
of the field of  extremals. 

The construction of the wave equation does not proceed by attempting 
to assign operators to classical observables and this is to be expected in 
view of the inherent difficulties in the latter program, as already mentioned. 
Thus for some Hamiltonians there is no wave equation and, as we have 
already said, we can exhibit explicitly all Hamiltonians which do allow 
wave equations. 
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The construction presented here is related to but not equivalent to a 
method presented earlier (Arens, 1965). In the present scheme, for example, 
in Lorentz formulation of the motion of a charged particle in an electro- 
magnetic field, the customary Klein-Gordon equation does not qualify 
for a wave equation (indeed there is none) unless the field is purely magnetic. 
This is in harmony with the fact that only then does the Klein-Gordon 
equation allow a decomposition into energy, and negative energy, 
submanifolds. 

2. Planar Phase Functions 

A familiar feature found in most text-books on quantum mechanics 
(e.g. Schiff, 1955, pp. 17-21) is a sketchy derivation or 'development' of 
the Schr/Sdinger equation. These developments are made by combining the 
momentum-energy relation of the classical conceptualization of the 
system under consideration with some rather elementary and intuitive 
ideas about complex-valued waves. 

Our intent here is to show that such derivations can be made absolutely 
rigorous provided one recognizes explicitly that the waves involved in the 
argument are planar. The waves involved in Schiff (1955) are indeed planar 
but one could get the impression that this is just done for simplicity. More- 
over, for systems with more complicated Hamiltonians than those in the 
usual examples, the dynamically appropriate concept of planarity might 
not be the obvious one. In any case we will give a definition of planarity 
for phase functions. This definition will involve only the Hamiltonian of 
the system. 

The concept of a Hamiltonian system involves a differentiable'~ manifold 
Q (the configuration space), the phase space (or cotangent bundle TI(Q) of 
Q (Sternberg, 1964, p. 144) and a function H defined on TI(Q) x R. Thus 
this Hamiltonian H is a function of the position, 'momenta' and 'time'. 

The dynamics of the system is defined as follows. Consider the funda- 
mental  linear differential form 0 (Sternberg, 1964, p. 143, Th. 7.1) which is 
defined on T~(Q). This can be used to define a linear differential form 
2 = 0 - Hdt  on Tt(Q) x R. In terms of canonical coordinates (x  1 . . . .  ,x", 
pl,...,p,) in TI(Q),  0 takes the form (Sternberg, 1964, p. 144, Th. 7.14) 

0 = Pi dxi (summation convention) 
and thus 

Z = p~ dx ~ - Hdt  

One regularly requires that (Sternberg, 1964, p. 152) 

det{ a2H \ ~ ]  r 0 (2.1) 

t We will henceforth omit this word 'differentiable' and tacitly assume that all mani- 
folds, functions, etc., introduced have a suitable order of differentiability. 
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at every point of T,(Q) • •. It then follows that, at each (a, z) in TI(Q) • R, 
there is exactly one vector ~ such that (t) ~(t) = 1 and (2) (d2; ~,t/} = 0 for 
all q. The vectors thus obtained by considering all (~, z) form a vector field 
which in coordinates has the appearance 

O k 0 0 
05 + H ~ - Hk OPk (2.2) 

where here, as well as later, H k means aH/apk and Hk means OH/Ox k. We 
will refer to it as the dynamical flow, and denote it by Fn. 

Let nl be the mapping of TI(Q) • R onto Q • ~ wherein (~,z) is mapped 
onto the pair (q, z) where q in Q is the base point of the covector a. So now 
if f is a function defined on Q • R then f o  nl is a function defined on 
TI(Q) • ~. 

Definition. L e t f b e  a real-valued function defined on Q • ~. Thenfwi l l  
be called a phase function if Fn( fo  7h)= (Fn;2}. When expressed in 
coordinates, this condition says more or less literally that the level surface 
{ f =  C +  e} in Q • R is obtained from { f =  C} by the Huyghens con- 
struction (Courant & Hilbert, 1931, p. 105). 

Let f be expressed in terms of  coordinates x ~ . . . . .  x" in Q and t in R, 
as f =  ~o(x I . . . .  ,x", t). T h e n f o  nl has formally the same form ~o(x 1 . . . .  ,x", t) 
where here x 1 . . . .  , x" have to be lifted to TI(Q) andpl  . . . . .  p,  are the con- 
jugate canonical coordinates. From (2.2) and the coordinate form of 2 (or 
from Courant & Hilbert, 1931, pp. 103-4) we have a familiar result. 

Theorem. f is a phase function i f  and only if  

00~ft+ H(Vf)  = 0 (2.3) 

Here by V f  we mean that the Pi are to be set equal to the af/axi. The 
notation Vf is intended to suggest something like df  However, df is a 
mapping from Q • ~ to TI(Q • ~) and Vfis the mapping from Q x R to 
TI(Q) • ~ in which (q,~) goes into (d(f(-,~))[q,~). Here f ( . ,~)  is the 
function for which f ( . ,  z) (q) =f(q, ~). Roughly speaking, Vfis the differential 
of f-with-t-constant. 

Equation (2.3) is the Hamilton-Jacobi relation. The condition t h a t f b e  
a phase function implies that the submanifold of all (~,r) in TI(Q) • R 
such that ~ = Vfis preserved under FH. 

For a given z, the Legendre transformation (Sternberg, 1964, p. 152) 
transforms the covector field defined by df(or  V f )  on Q • {z) into a vector 
field Lflt=~ on Q • {~}. In terms of coordinates, 

0 
Lslt= ~ = X ~ Ox ~ 

where 
X'(q, ~) = H'(Vf(q, t)) (2.4) 
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I f  one adds on a unit  t -component,  one obtains a vector field 

0 
+ Lz 

on Q • R whose integral curves form the f i e ld  o f ex t remal s  associated with 
a solution of  the Hamil ton-Jacobi  equation in Courant  & Hilbert  (1931), 
p. 102. 

We are going to define a divergence for  vector fields in Q, and when 
Lslt=, has divergence 0 at some q in Q we will say t h a t f i s  planar at (q,z). 

Say x 1 . . . .  , x" are coordinates in Q. Then x ~, . . . ,  x n, p~ . . . . .  p , ,  t are 
coordinates in Q • ~. Using (2.1) one can replacep~ . . . . .  p ,  by u ~ . . . . .  u" 
where u s = H *. Thus we obtain a new local coordinate system x ~ . . . . .  x ", 
u 1 . . . . .  u n, t for  TI(Q) • R. In  these coordinates the dynamical  flow Fn 
(see (2.2)) has the fo rm 

Ot + Ox ~ - ~ (summation convention) (2.5) 

We will say that  A t is the i th coefficient of  the dynamic connection relative 
to the coordinates x ~, . . . ,  x" in Q. 

N o w  let f l , . . . ,  y" be another coordinate system in Q. It  leads canonically 
to a coordinate system y~ . . . . .  y", q~ . . . . .  q,, t in TI(Q) • ~ where 
q~dy ~ =p~dx  ~. We introduce the analogues o f  the u~, namely v e = OHlOqa. 

Proposition. Le t  A" be the coefficients o f  the dynamic connection relative 
to the new coordinate system. Then 

2~ Ox ~ O z x k 
ay--- ~ Oy ~ Oy a v" v a + Ak (2.5) 

The p roo f  is as follows. 
From p i d x  ~ = q~dy ~ we get q~ =pi(Ox~/Oy'). N o w  

0 H  0q~ 0 H  
U k 

Op~ Opk aq~' 

so u k = (Oxk/Oy')w. We apply FH to bo th  sides of  this equation, using 
(O/at) + u~(OlOx ~) - A'(OIOu') on the left, and (O/Ot) + v~(OIOy ~) - 3~(OIOv ~) 
on the right. This gives (2.5). 

In  the following discussion we will be dealing with some particular fixed 
value z o f  time t. 

Let Ybe a vector field on Q. We will say that  Yis dynamically presentable 
if it is the Legendre t ransform of  some covector field ~. This means in 
coordinates that  Y~ = H ~ o ~ where, as we just said, t is held fixed. I f  X 
and Y are vector fields in Q and Y is dynamically presentable, then we 
can fo rm a newt  vector field V x Y, using in any coordinate  system the 

1" The symbol V here is a rather modern one and not related to 'gradient' and thus not 
related to the Vfin (2.4) either. 



HAMILTONIANS ALLOWING WAVE EQUATIONS 395 

formula 

where 

X J [  OY~ c~ ] 0 v x Y =  [ ~ - ~ 7 + & 1 ~  , &, J 
(2.6) 

10A z 
A J~ - 2 0 u  J 

Proposition. (1) The right-hand side of (2.6) is the same in all coordinate 
systems.  (2) Va.x+gr = f V  x +gV r. (3) I f  A j  l depends linearly on the co- 
ordinates u 1 . . . .  , u n then V is an affine connection. 

Assertion (1) follows immediately from (2.5). (2) is of course obvious 
and is mentioned merely for comparison with the defining properties V 1 
and V2 for affine connections (Helgason, 1962, p. 26). The truth of (3) is 
obvious once one has these properties Vl, V z in mind. 

We feel that this relation to affine connections warrants the term dynamic 
connection. 

The relation to the older notation (cf. Eisenhart, 1962, p. 26) of covariant 
derivatives is established by recognizing that if Y is a dynamically present- 
able vector field, being indeed the Legendre transform of a covector field 
then (a) in a given coordinate system, the Y~ are the contravariant com- 
ponents of g and the components of ~ are the covariant components of Y; 

O Y i 
(b) ax ~ -t- As.' o o~ 

are the components of a mixed tensor of type 7"1 ~ : the dynamical  derivative 
of Y. 

The dynamic  divergence of iF is now (consistently) the function on Q 
(involving however the parameter z) 

a y  ~ 
div Y=  ~ + A~ t o 0~ (2.7) 

where the summation convention is adhered to. 
For the dynamic divergence there is another, often more convenient, 

formula, 

~x' - F,,(a) o ~ (2.8) 

where 5 is the determinant (2.1), FH is the dynamic flow (perhaps in the 
form (2.2)) and oc~ means that after the differentiation (Fn) is performed 
the Pi are replaced by the covariant components of Y (compare Eisenhart, 
1962, p. 32, Ex. 8). 

We proceed to establish (2.8). In the first place we surely have 
- A  i = Fo(u')  = F , ( H ' ) .  Now 

0 0 
Ou J - gjk Opk 
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where (g~j) is the inverse (matrix) of (HJk). Thus 

2Aj ~ = -g~.k ~ p  k [Ho i + H '~ Hm i - 11,, H i"] 

whe r e f  i means af/Opi,f~ means Of/Ox ~, andfo means ~f/Ot. Proceeding, 

2Aj~ = _ g . i k [ H i o  k + m k  m ik  ~ i , .  __  H H H m - H m  H H m H  ~"k] 
i __  ik  H m H i k  __ H i , n k ]  k im  2Aj ----gjk[Ho + - -  --m H~ + g~k[H~ H - Hm ~ H ~k] 

The second bracket is antisymmetric in (i, k), while fo r j  = i, its coefficient 
is symmetric. Thus in A~ ~ this term drops out and we are left with 

2Ai~ = --g~k[Hio g + ..Hm H i~_.,. -- --,~14 H i~g] 

= -g~kFn(H ik) 

Now the operator Fn satisfies the rule Fo(AB)  = F n (A)B  + AFn(B)  and, 
therefore, whenever g and h are matrices inverse to each other then 

Fn(det h) = det(h) trace(gFn(h)) (2.9) 

This formula results from the fact that det(exp(h)) = exp(trace(h)). Apply- 
ing it to g~k and h~k = H is, we obtain 

2A,' = -(26) -~ Fn(~) 

Thereupon (2.7) gives (2.8). 

3. Two Examples 

Theorem. Suppose H = �89 + AO(Pj + A j) § Ao where gij, A ~, V 
depend on x 1, . . . ,  x ~ and t; and g ~j is a non-singular symmetric matrix. Then 
the dynamical divergence is the same as the Riemannian one based on the 
quadratic form gtjx~xJj, (g~j) being the inverse to (gij). (3.1) 

Perhaps 'pseudo-Riemannian' would be a better term here, since we are 
not requiring (g~J) to be positive definite. 

The proof  of (3.1) is as follows. We note H ij = glJ and then we observe 
that (2.8) has exactly the same form as Eisenhart (1962, p. 32, Ex. 8). 

While the divergence is the same as the Riemannian one, the dynamical 
connection is different from the Riemannian connection. Suppose in fact 
Q = ~" with the usual Cartesian metric (g~ = 6~J). Then Aj ~ turns out to be 

I [OA~ OA~ 
2 \ O~x ~ o-XTX j]  

The dynamics of a charged particle is governed by a Hamiltonian of this 
type, and the Aj ~ essentially constitute the components of the magnetic field. 

The next theorem mentions normal coordinates (Eisenhart, 1962, p. 55) 
in a Riemannian manifold. Normal coordinates at Po are coordinates 
x a, . . . ,  x" such that ifg~j are the components of the metric then gtj - 6~j 
and its first-order derivatives vanish at P0. 
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Theorem. Let H = Ao + VkPk + R where R is the positive square root of 
m 2 + g~(p~ + A~)(pj + A j). Ao, v k, m, g~J, At are functions o f x  ~ . . . . .  x ~ and 
t such that (3.2) 

m is always positive (3.3) 

the matrix (gO) is symmetric and positive definite (3.4) 
Then 

6 = M 2 R -"-2 det(g ~J) (3.5) 

The remainder of the theorem will be formulated for coordinates normal 
at Po. Partial derivation with respect to time is indicated by suffixing a '0', 
and with respect to x k, by suffixing a 'k'. We also abbreviate Pk + Ak by qk. 
Moreover, we will always sum over repeated indices. 

Then (see (2.8)): 

The term -(1/26)Fn(6) is the sum of three quantities: 

n + 2  ~j 
~ [�89 q~qj - vk~q~q~ + q~(A~o - Ao~ + vk A~k + v? A~) + m(mo + v~m~)] 

(3.7) 
and 

_xl ,,u2 ~o (3.8) 

We indicate first the proof  of (3.5). First of all, 

H~ J{ 02H ~ g~ g~kqkgJ~qs 
\ Op/ R R 

Let M~j be the inverse of the matrix glj. Then 

R H  'j Mj~ = 6j  + R' q~ where R ' -  g'~qk 
I N - -  

Now det(6J + R~qs) is the value at -1  of p(2)= det(R~q~- 26j), the 
characteristic polynomia of (R~q~). This latter has rank one and so its 
non-zero eigenvalue is its trace, whence p (2 )=  (-2)n-l(R~q~- 2) and so 

det(RH IJ Mj~) = R ~ q, + 1 (3.9) 

The latter is mZR -2. Of course det(Mj~) is the reciprocal of det(g~0 from 
which (3.23) follows at once from det(RH~Mj~) = R" 6 det(Mj~). 

The calculation of--(1/26)FR(6) is naturally broken into a sum of three 
parts, because it is -�89 times a logarithmic derivative. Hence we calculate 
--(1/26)FH() of m 2, R -"-2, and det(giJ). The results, we claim, are (3.6), 
(3.7) and (3.8) respectively. In each case we use (2.2) for example, (3.6) 
results easily from the fact that 

i 

= v ~ + q~ H ~ 
R 
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For (3.7) one has essentially to compute FH(R2). This is (a/Ot) R 2 + (H, R 2 } 
where {, ) is the Poisson bracket (cf. (2.2)). Here (H,R 2) = {Ao + vkpk, R 2) 
because {R, R 2) = 0. At this point we leave the remaining calculations to 
the reader, remarking that those Pk have eventually to be replaced by 
qk - Ak, and also that g~J = ,5 ~j and g~J = 0 at Po. 

For  (3.8) we use (2.9) with hij = g~J. 

4. The Differential Equations for Planar Phase Functions 

A function f o r t  Q • R is a phase function if and only if the Hamilton- 
Jacobi relation (2.3) holds. It is planar at a point (po,'C) in Q • ~ if for 
Y =  L~-, the Legendre transform of Vf (see Section 2, particularly (2.4)), 
the dynamical divergence (2.8) vanishes at (Po, Z). The ~ in formula (2.8) 
is in this application Vf, which is d ( f res t r ic ted to t = z). 

The vanishing of the divergence we will call the divergence condition. It 
takes the form of a partial differential equation. The purpose of this section 
is to exhibit this equation for each of the two systems exhibited and studied 
in Section 3. 

In each case we assume normal coordinates at Po. When the metric is 
indefinite, as it may be in (3.1), normal coordinates means that gl~ = 0 at 
Po for i # j  and = 2k for i = j  = k where 2k = • and also g~J = 0 at Po- 
However, it is often better to leave g~J evaluated at Po in the form gij rather 
than attempting to express it in terms of 2~ (or 2j !). 

Again, new suffixes on any tensor mean partial derivatives (and at Po 
this is the same as covariant differentiation). 

Theorem. Let H be as in (3.1) and suppose f is a phase fune tion. Then f is 
planar at Po i f  and only i f  (4.1) 

g~J(f~j + A,j) = 0 at Po (4.2) 

Proof. In normal coordinates, the divergence of Y is Yi ~. Now Y~ for 
the vector field associated wi thf is ,  by (2.4), 

g~J(pj + Aj)lp~=y~ : g~J(f~ + A j) 

We take O/Ox ~ of this and evaluate at Po. The result is (4.2). 

Theorem. Let H be as in (3.2) and suppose f is a phase function. Then f is 
planar at Po if  and only if, at Po (4.3) 

-R-3( f i j  + Ai~)qiqj - R-3mmjqi + vS + R-l(fj~ �9 + A~j) + ~ = 0 (4.4) 

where ql = fi  + Ai and 

g = -m-l[R-Xqjmj + mo + vkmg] + R-2(�89 + 1) 

• [�89 - -  v j i q i q j  -~ qt(Aio - Ao~ + vkAik + vikAk) + m(mo + vkmk)] 
1 ~i~ (4 .5 )  

- -  ~ N o  
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Here we sum over repeated indices. The term especially exhibited as 
is the 'extra' term of the divergence provided by --(1/26) FH(6) (see (3.6)- 
(3.8)). 

We account for (4.4) as follows. According to (2.4), 

y t  = Htlpk=Sk = V ~ ~ gtJ(fl + At) 
R 

Here R now stands for the old R withpk replaced byfk.  Although this yt  
is still going to be differentiated, we can already assume 

y l = v  t q f i +  At 
R 

where R 2 = m 2 +  (f~ + A t ) ( f t  +At)  because the g~J are 0 at Po- Upon 
taking O/Ox~ of this Y~ we obtain (4.4) except for the d ~, as we are supposed 
to do. We emphasize that the R in (4.4) and (4.5) is the positive square 
root o fm  2 + (f~ + A~)(f~ +A~). 

5. Wave Equations 

Let Q be the configuration space and H the Hamiltonian of a dynamical 
system. Let ~ be a linear at most second-order partial differential operator 
o n Q •  

q / /=  W + W ~ O W~ B O 2 
Ox ~ + Ox ~ Ox ~ (5.1) 

where c~ = 0, 1 . . . . .  x" and x ~ = t or 

o O Wk 0 ~ 2 W ok 02 02 
qr W +  W fit + OXk + W OO + Ot Ox~ + W J k -  (5.1) Ox ~ Ox ~ 

Here W, W ~, W ~ are functions on Q x ~ and W ~e = W B~. 

Definition. We will say that ~r = 0 is a wave equation for the system if 
~/U(e ix) = 0 at (Po, z) wheneverf is  a local phase function in a neighborhood 
of (Po, z) and planar at (Po, z), and i = ~/-1.  

Here the term 'local phase function in a neighborhood' is used and must 
be defined. It shall mean t h a t f i s  defined in some neighborhood of (Po,z) 
and satisfies the Hamilton-Jacobi equation (2.3) on that neighborhood. A 
reader interested in basic principles might then well wonder what the point 
of the theorem involving (2.3) is, if one would just as well have defined 
phase function as meaning (2.3). Our answer is a combination of two 
remarks: (1) One wants to emphasize the relation of phase functions to 
the Huyghens construction; (2) it is possible to define dynamical system 
in a more general way, a purely local way, so that any open neighborhood 
in Q x ~ is a (sub) system and then a local phase function is a phase function 
for the subsystem. 
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Another feature of the definition is that the condition of planarity (e.g. 
(4.4)) is required only at (Po,z) rather than, say, in a neighborhood. This 
would lead to serious difficulties inasmuch as we would have to insure the 
existence of many simultaneous solutions (in a neighborhood) of (4.4) 
and (2.3). 

Lemma. ~rq~ = 0 is a wave equation i f  and only i f  (5.2) 

W -  iW~ H + iWkfk + W~176 + iHJ Hj - HH)  

+ 2 W~ + Hfj) - W~kfjfk 
+ { i W ~ 1 7 6  k - iW~ k - iW~  j + iWJk)~k = 0 (5.3) 

at (Po, ~) whenever the divergence condition holds at (Po, z). It is understood 
that each Pk in H and its derivatives is replaced by fk before evaluation at 
(Po, ~:). 

H H  is merely the square of H. 
The proof  of (5.2) is as follows. In the definition of wave equation one 

can certainly test ~/U only with f such that f (Po, z) = 0, since (1) ~g/" is linear 
and (2) only the derivatives o f f  enter into the Hamilton-Jacobi equation 
(2.3) and the divergence condition. Now for such f ,  ~//'(e ~f) = ~#/'(t - i f - �89  
at (Po, z). Using (2.3) to get rid offo, foo, andfoj  results in ~/g'(e ~y) being at 
(Po,'C), the left side of equation (5.3). 

In Section 4 we defined the divergence condition. In general, this is a 
quasi-linear differential equation of the form 

DJgfjk + D = 0 (5.4) 

where the D ~k and D contain theft.  (The D is usedt to remind us of 'diver- 
gence condition'.) Examples are (4.2) and (4.4). We can assume D Jk = D kj. 

Lemma. ~r = 0 & a wave equation i f  and only i f  there is for each (Po, z) 
an expression 2 involving the indeterminates f l  . . . . .  ~ such that (5.5) 

A + BJkfik = 2(DJkfjg + D) (5.6) 

is an identity in the indeterminates f l  . . . . .  f ,  and f l l  . . . . .  f , ,  (where however 
f i j  =fj i) ,  the coordinates having been set equal to those for (Po, ~). 

The sufficiency of (5.5) is easy to see. The necessity is equally important, 
especially when we want to show that sometimes no wave equation is 
possible. The necessity depends primarily on the fact that the left-hand 
sides of (5.3) and (5.4) depend linearly on thefjk. Suppose that ~r = 0 is a 
wave equation. We can obtain a solution to (2.3) (Hamilton-Jacobi 
equation) with any preassigned values off1 . . . . .  fl~ . . . . .  f , ,  at (Po,'C). Fix 
some values for f l  . . . . .  f ,  and regard the fjk ( j  < k) as the Cartesian co- 
ordinates in real �89 + 1)-dimensional space. By hypothesis, DJkfjk + D = 0 

t These  D jk and  the D are  funct ions  defined on Q • ~ ,  jus t  as the  W, H,  etc., are, and  
as the A and B Jk, about to be introduced, are. Incidentally, this A is unrelated to the 
field whose components are A1 . . . . .  A,. 
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implies both the real and the imaginary parts of A + BJkfjk = 0. Hence 
these are each real multiples of the real DJ~fjk + D and from this the 
required (complex) 2 can be assembled. Its value depends on the values 
chosen for f l , . . . , f ,  at (Po, z). This completes the proof  of (5.5). 

We are now prepared to consider examples. 

Theorem. Let Q be a manifold and let g be a 1-parameter family of  non- 
degenerate eontravariant symmetric tensor fields of  order 2. Let A be a 
1-parameter family of eovariant vector fields on Q and let Ao be a function 
on Q • ~. Then the system with Hamiltonian 

H = �89 + A j) (Pk + Ak) + Ao 

has a unique wave equation 

~ 0 ~ +  7-O~x~+Aj ~ x ~ + A k  (p+Ao~o=0  (5.7) 

Here the operators O/Ox j are to be interpreted as eovariant differentiations 
appropriate to whatever kind of tensor field on which they are about to 
operate. 

The proof  of (5.7) begins by a statement of (5.6) assuming that the 
coordinates are normal at (Po, z). (The relation expressed by (5.6) is the 
same in all coordinate systems.) So we write (5.6), using (4.2) but merely 
referring to (5.3) for A and B jk. 

A + BJ~fjk = 2gJk(fjk + Ajk) (5.8) 

Thus B Jk= }~gjk, and B Jk= 0 f o r j r  k. This is an identity inf~ . . . . .  f~, 
and H J = g j k ( f +  Ak). Therefore (one must look at (5.3)) W oo must be 0. 
After that one sees that W ok must be 0, too. Thus 2 does not really depend 
onf~ . . . . .  f ,  in this example and is constant. (Everything has been evaluated 
at Po, r in these equations.) The relation A = 2gJkAj~, written out with 
W oo = W ok = 0 reads 

W -  iW~189 + A j)(fk + Ak) + Ao] -- i2gikfjfk = 2g#k A#k 

This yields 

W ~ = 22, W J = 22g jk Ak, and W = i}~(g Jk Aj A k -k 2Ao) + 2g Jk Ajk. 

Except for the common factor 2, the equation is now uniquely determined 
(and is obviously all one can mean by 'unique equation'). If  we let )~ = - i /2  
it comes out exactly as asserted with the partial derivatives as written. 
Considering that we have normal coordinates, it must have the covariant 
differentiation form in other coordinate systems. So much then for the 
uniqueness. The existence follows from the fact that (5.8) does hold with 
the values W , . . . ,  2 just found. 

This is of course the Schr~Sdinger equation. 
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Theorem. L e t  Q, g, A ,  Ao be as in (5.7), but  require g posi t ive definite. 
L e t  v be a 1-parameter f a m i l y  o f  vector f ie lds  on Q, and let m be a posi t ive  
reaLvalued  fune t ion  on Q x ~.  Then the sys t em with Hamiltonian~f 

H = Ao + vJp~ + R 
where 

R = [m z + gjk(pj  + A j) (Pk + Ak)] 1/z 

has at mos t  one wave equation; and it has none at  all unless all o f  the fo l lowing  
hold. For each (Po, z), in terms o f  coordinates normal  at (Po,z)  

Aok - Ako = v k i A j  + v j A k j  

gJo k -- v~ j -- v~ k = 0 f o r j  # k 

g~a _ 2via = g2o2 _ 2 r e 2  . . . . .  ggn __ 2V," -- 
mo + v j m j  

m 

(5.9) 
(5.9.1) 
(5.9.2) 

(5.9.3) 

Consider this first for  j - - k  = 1 and then for j =  2, k = 1. Use that  
relation to eliminate p / R .  This results in 

(W oo H I H 1 _ 2WOa H a + W ~) [ - ( H  2 - v z) (H ~ - v~)] 

= ( W O O H Z H ~  _ WOZH1 _ W O a H  2 + W2~) [1 - ( H  ~ - v l ) ( H  ~ - v~)] 

We consider this an identity in H ~, . . . ,  H ' .  The quartic terms cancel, so 
we equate the coefficients of  (H~)3: W~176 2 = W ~ Hence 

(1) W ~  W ~ 1 7 6  j f o r  a l l j  

t The theorena holds also if H = Ao + v~pj - R, with the same wave equation. 

Here suff• zero means partial derivative with respect to t. A suffix 
not  0 indicates covariant  differentiation with respect to g o f  the type 
appropriate  to the tensor field involved. 

To prove (5.9) we begin by observing that  H j = v J + (qj /R) ,  where 
gj =.fj  + Aj. Iff~ . . . .  , f~ are regarded as independent variables, as we will 
(and did in (5.7)) we can express them in terms of  H 1 . . . .  , H"  and take 
them as the indeterminates. (The additional indeterminates will be the 
fjk, J < k, as before.) 

As in the p roo f  of  (5.7), we have to verify the definition of  wave equation 
at each point  (Po, z) of  Q x R. We will assume that  the coordinates x l , . . . ,  x" 
are normal  at Po with respect to the metric g, since it suffices to do this in 
one coordinate system. Therefore relations involving partial derivatives 
with respect to these coordinates at Po correspond to relations involving 
the corresponding covariant  derivatives at Po in any other coordinate 
system. 

Let us consider the identity B Jk = 2 D  ik. It  helps to let 2 = i#. We consult 
(5.3) and (4.4). After dividing out  the i and using qj = R ( H  ~ - vl), we get 

WOO H j H k _ WOJ H k _ WOk H j + W Jk = ~ [5 jk - ( H  ~ - v j) ( H  k - Vk)] 
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Equat ing coefficients o f  (H1) 2 yields W12= W ~ 1 7 6  2. Equat ing co- 
efficients o f  H I H  2 yields W ~ = W~176 + v 1 vl). This clearly implies 

(2) W Jk = W ~ 1 7 6  jk + v j v k) 

Putt ing these into our  original equat ion shows that  it is an  identi ty if  
and only i f - W  oo = #/R. 

We now consult  (5.3) and  (4.4), and consider the relation A = 2D. We 
note (5.3) 

A = W -  i W ~  iWkfk  

+ W~176 + i H J H j  -- H H +  2vJ(- iHj  + Hfj)  -- (6 Jk + vJv~)LA] 

F r o m  A = 2D and 2 = - i R  W oo it follows tha t  W oo cannot  ever be 0, for  
this would make  W ~ W k, and W =  0. So we can let W oo = - i  and ;L = iR. 

We now write out  A = 2D in full (see (4.4)). 

(3) W -  iW~  H + i w k  fk  + iHo - iHJ Hj  Jr H H  + 2ivJ Hj  - 2vJ f j  H 

+ (5 Jk - Vivk) f j fk  - i R ( - R - 3 A ~ j q i q j  - R-3mrnjq j  + v j  + R - 1 A j j  + #}  

= 0  

For  #,  see (4.5). When  thefk are expressed as qk - As, this is an algebraic 
identi ty in ql . . . . .  q,. I t  actually is equivalent to two polynomia l  identities. 

The  first is obta ined by taking f rom (3) those terms containing an odd 
power  of  R. The second equat ion consists o f  those terms having only even 
powers  of  R. This second equat ion (after multiplying by i and various 
simplifyings) is 

i W  + W~ + vJ(qi - Aj)] - W J ( q j  - A j )  - A o o  - v o J ( q j  - Aj)  - vJ Aoj 

- VkVkJ(qj -- A j) + i(Ao: - A j A j  + m 2 + 2A~q~) - m - l m j q j  + A j j  = 0 

This implies that  

(4) W ~ = W ~ v j - Vo j - v k vk j + 2iAj - rnj rn -1 

and 

(5) - i W =  W~ - Vk Ak) + Wk A~ - Aoo + Vok Ak 

-- Vk Aok + Vkvki A j  + i(Ao z -- A~Aj  + m 2 )  Jr Ajj 

These just  tell us what  the W J and W are, in terms of  W ~ and the 
Hamil tonian .  

The  first (odd powers  of  R) equat ion is 

R 2 { W 0 Jr 2iAo mo ~m l)k nTk Jr " 1 --JJlt z • n [1 gig ~, . k v Y - ~ o  ) "  2 - o u j u k - v j  qkq~ 

-[- qJ(Ajo -- Ao j  Jr vg Ajg + vjg Ak)  Jr m(mo Jr vgmk)] = 0 

This requires (5.9.1), (5.9.2), (5.9.3) to hold and also tells us that  

mo Jr v k rng 
(6) W ~ = -2 iAo  + 

m 
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If  the reader witl accept our report on the results of laborious computa- 
tions, then (5.9) is now established. 

This (5.9) differs from (5.7) in that no wave equation exists unless some 
relations hold between the given fields A j, Ao, v J, m: namely (5.9.1)-(5.9.3). 

These conditions are not automatically fulfilled even when m is constant, 
v is 0, and gjk = 3Jk. This is of course the case of a charged particle in an 
electromagnetic field. (5.9.1) remains, and says that there is a wave equation 
if and only if the electric field Ago - Ago is 0. 

The actual list of coefficients of the operator ~ is as follows. 

W OO = - 1 ,  W ~ = W J~ = - d ,  W Jk = 6 jg - v J v k 

We introduce 
m o + v J m j  

K 
m 

Then 

W ~ = - 2 i A o  + ~c, 

W J = 2 i ( A j  - A o v  i)  - Vo J - VkVk i -- m j r n  -a + toy J 

W =  (14o) z - Ak Ak  --  m z + i (KAo -- A g m k m  -1 --  Aoo - vg Aog + Akk) 

With our previous understanding about covariant derivatives the operator 
qg" can be written 

1 0 v J 0 ix~z  -jk 02 
+o OxJOxg 

k 1 0 2 
+ (2iAg - m m -  ) - f f ~  - m - Ag Ag 

1 OK 
+ i ( A ~ g -  A k m g m - O  2 0 t  4-tic2 (5.9.5) 

Thus the wave equation can be written in the form TZgo = $ 9  where S 
contains only spatial derivatives and T is first order in the time derivative. 
The natural next step is to consider the relation of the solutions of 
T2go = S(p to the solutions of TkU = S + 7/ and T T  = - S  § 7 t ,  as is done 
for the Klein-Gordon equation (Schweber, 1961, pp. 63-4). To have any 
formal relation between the ~o and the 7 ~, the operators T and S must 
commute. For this reason, we have calculated the commutator of the T and 
S in our q4/" (5.9.5). We present the result only for tc = 0, when in fact the 
wave equation is quite reminiscent of Klein-Gordon:  

1 0  V J O  Ao) 2 - j k [ l O  1 0  

(The m here may still be non-constant.) 

Theorem. T h e  c o m m u t a t o r  o f  

T 1 0  v k 0 
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and 

1 k i l o  A j ) ( ~ - - ~ + A g )  m 2 S = g  + 

0 
-i(g~o k - v j  - vj k) Ox J Ox k 

0 
+ [ -2c~!kA'oo ~ + 2(Aok -- Ako -- v 1 Akj + A j  vj k) - v~j] Ox k 

- 2mi(mo + v k mk) - igJok(AjAk -- iAjk) + 2iAk(,4ok -- Ako -- vJAkj) 

The relevance of this is as follows. If  S and T commute, we obtain, after 
a little rearrangement, two conditions (among others) one o f  which is 
precisely (5.9.1) and the other 

g~k _ vkj _ vjk = 0 (5.9.7) 

obviously related to (5.9.2). 
It appears, in other words, that the side-conditions (5.9.1)-(5.9.3) 

resulting from our concept of wave equation are very similar to those 
conditions which are needed to relate the solutions of T2cp = Sq) to those 
o f T 7  t = S§ t and T7  j = - S §  j. 

6. What  Sys tems  Have  Wave Equations ? 

The question above is equivalent to the following: what wave equations 
are there? The answer is: practically no others than the two examples 
given by (5.7) and (5.9). 

For  our main theorem here we require some real analyticity. A real 
analytic function is representable by its Taylor series. 

Theorem. Suppose Q is a connected real analytic manifold and suppose H 
is a real analytic funct ion on TI(Q) • ~.  Suppose H is a Hamiltonian f o r  
which there is a wave equation whose coefficients do not all vanish at  any 
point  o f  Q • R. (6.1) 

Suppose that in coordinates x ~ . . . .  , x" , t  f o r  Q • R the equation is (cf. (5.1)) 

wOO 02 ~0 ~_ . . . .  Oj 02 (0 . "~ jk 02 ~0 
Ot z zrv OtOx J W OxJOxk + lower o r d e r t e r m s = O  (6.2) 

Then in the coordinates x x . . . . .  x",pa . . . .  , p , ,  t f o r  TI(Q) x R, the Hamiltonian 
H satisfies an equation 

W oo H z - 2(c + W~ H + WJkpjpk  = 2akpk + 2b 

where e, a k, b (as well as W ~176 W ~ W Jk) are funct ions o f  x x . . . .  , x", t. 
Before proving this we state a corollary. 

Theorem. I f  the coefficient W OO in (6.2) is identically zero, then the system 
is one o f  those presented in (5.7). I f  the coefficient W oo is never O, then the 
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system is one of  those presented in (5.9). I f  W oO is not identically 0 but has 
some zeros, then the Hamiltonian still looks like that of  (5.9) but the tensor 
fields g, A, Ao, m may have singularities at those zeros. (6.3) 

Let us show now how (6.2) follows f rom (6.1). Suppose W oo is 0. Then 

(c + W~ H = �89 + akpk + b 

This shows that W ~ = 0 for allj .  For if W ~ is not 0, then the right-hand 
side would have to be divisible (as a polynomial in p) by c + W~ This 
would make H linear in the p 's  forcing the determinant of H sk to vanish. 
But for a Hamiltonian, this is not allowed. 

I f  we now knew that e is not identically zero, we would be able to conclude 
that H has the desired form because of the analyticity assumption. So 
suppose c were identically 0. Then W jk would be 0, and the wave equation 
would be entirely a first-order equation. We would then have, according to 
our fundamental relation (5.6), the identity 

W -  i W ~  iWkfk = 2(HJ~fjk + D). 

Now the H ik cannot all vanish, so 2 = 0 and W -  i W ~  iwkfk = 0. I f  
W ~ = 0 then immediately all the coefficients of  the wave equation would 
vanish. So W ~ is not 0, thus making H a first-degree polynomial inp~ , . . . , p , .  
This, as we have remarked, cannot be. 

This finishes the case W oo = 0. I f  W oo is never 0, we may as well take it 
to be 1. Then our equation may be written as 

( H -  c - W ~  2 = gJkpjpk + akpk + b (6.4) 

where these g's,  a's, and b are easily calculated. By a change of coordinates 
we may diagonalize gjk. Of  course it will be a sum of squares, but will 
there be n terms ? I f  there were less than n terms, or in other words if some 
p 's  were missing, then the corresponding a k would also be zero (by the 
evident positivity in (6.4)). Thus if there were less than n terms we would 
have H =  c + W~ + a function of only part  of  the p's.  Such an H 
would have d e t H  ~k = 0 at the (Po, z) in question. This contradiction shows 
that gjk is positive definite and we can complete the square on the right: 

( H -  c - W~ 2 = gjk(p~ + A j) (p~ + Ak) + d 

This function d can obviously never be negative, but can it ever be 0 ? I f  d 
were 0 then H would not be differentiable with respect to Pk at Pk = -Ak. 
So d is never 0 and H has the form Ao + vJpj • R where R is as in (5.9). 

Finally, if W oo has both zero and non-zero values, let G be the subset of 
Q • ~ where W oo is not 0. By the previous reasoning, H has on the par t  
of TI(Q) • • lying above G the form announced in (6.2), whose proof  is 
now complete. I t  is interesting to note that the points of  Q • L~ not included 
in G constitute only a set of dimension lower than that of  Q • [~. 

We now proceed to prove (6.1). The variables of  interest are thepl  . . . . .  p, 
and functions on TI(Q) • ~ which depend only on x ~ . . . . .  t will simply be 
called constants. Thus W, W ~ W k, etc., are constants. By H J, etc., we mean 
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as before OH/apj.  For  functions F and K soon to be introduced we use the 
same superscript notation for partial derivatives. 

Consider the relation B jk = )~D jk (see (5.6)). Let 2 = iy. Then 

W OO H J H k _ WOJ H k _ WOk H j + W jk = y H  jk 

Let _ 1 ~k _ F - ~ W  PjPk W ~ 1 8 9 1 7 6 1 7 6  2. (This last H 2 is really the 
square of  H!)  It is easy to verify that F Jk = K H  ~k where 

K = y - W ~  i + W oo H 

Suppose K were a constant c. Then ( F -  c H )  ~k = 0 and F -  c H  has the 
form akpk + b where a k and b are constants and after multiplying everything 
by 2 this is precisely the assertion of (6.1). 

Therefore it remains only to show K is constant. F rom F jk = K H  Jk we 
get F TM = K i  H Jk -k K H  ijk and so K~ H ~k = K J  H ik. Multiplying by dpi (and 
of course summing) shows that H J k d K =  K J d H  k. 

Now suppose K were not constant. Then there is a j and a point A in 
R" where K i is not 0 and hence in a neighborhood of A we have d H  k = L d K  
for some function L. This of course implies that each partial derivative H k 
has the f o r m f  k(K) where f  1 , . . . , f ,  are some n functions of  a single variable. 
From H kJ = H jk one gets f k ' ( K )  K j = f J ' ( K )  K k. Moreover, the functions 
( f l ' ( K ) ,  f Z ' ( K )  . . . .  , f " ( K ) )  are never all zero at any point, since then 
det H jk would vanish. 

Consider the level surface Z where K has some value c. We have 
f k ( c ) K J  = f J ( c ) K  k and this implies that the normal ( K  1 . . . . .  K ' )  to Z is 
always parallel to ( f ~ ' ( c )  . . . .  , f " ( e ) ) .  This obviously implies that Z is a 
piece of  a hyperplane (i.e., flat). 

Since each H k depends only on K, it follows that each H k is constant on 
Z. Therefore if ( v l , . . . ,  v,) is a vector orthogonal to ( f l ' ( c )  . . . .  , f " ( c ) )  then 
v~(O/Op~) must kill H k. That is to say v l H  k~ = 0. Since n > 1, such a relation 
implies d e t H  k~ = 0, which by the definition of Hamiltonian is, of course, 
impossible. 

Thus (6.1) is proved. 
In a way (6.1) is not very surprising, for if the wave equation is at most 

second order in O/Ot, then H ought to satisfy a second-degree equation. 
Thus the conclusion of (6.1) might be regarded as a consequence of our 
having made 'second order '  part  of  the definition of 'wave equation'. It  is 
our guess that (6.1) would still be true if the restriction to second order 
were dropped f rom the definition (cf. Arens, 1965, p. 158). The degree 2 in 
(6.1) is probably a consequence just of the fact that the divergence condition 
involves only the second- and first-order derivatives of  the phase func t ionf  
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